S.0	
Outlin	1e
<u>of</u>	
Network CS:3	Security 56
Mohamed	Gouda
· ·	

S.1 Secure Communication
. Entity S sends msg M to entity R
• This communication is secure iff it satisfies the following 3 conditions
1. Confidentiality:
No entity other than S and R can
understand M.
2. Integrity:
Sand R are sure that M is not altered after
it is sent by S and before it is rovd by R
3. Authentication:
When R rows M, R can confirm that S is the
entity that sent M.
When S sends M, S can confirm that R will
be the entity that rovs M.

S.2 Tools to A	chieve Secure Communication
1. Symmetric Keys	
2. Public and Private Ke	ys
3. Secure Hash Function	S
4. Msg Authentication	
5. Digital Signature	

S.3 Symmetric Keys

- Assign a unique symmetric key K to every pair of entities S and R. Only S and R know K.
 - · Kt(M) denotes "encryption" of M using K
- K⁻(K⁺(M)) denotes "decryption" of (K⁺(M)) using K
 - · Theorem: K-(K+(M)) = M

S.4 Confidential Communication Using Symmetrical College White Middle Keys . To provide cofidential communication from S to R using K: i. S computes Kt (M) and sends it to R ii. R computes M as K (K+(M)) from above theorem iii. Only Sand R know and understand M

S.5 Public and Private Keys

- Assign two keys, K_s^+ and K_s^- , to every entity S. Key K_s^+ is named public key of S, and key K_s^- is named private key of S.
- Every entity knows K to but only entity S knows K.
- •KR (M) denotes the "encryption" of M using the public key of R
- K_R^- (K_R^+ (M))) denotes the "decryption" of K_R^+ (M) using the private key of R
- · Theorem: K (K+(M)) = M

S.6 Confidential Communication Using Public Keys . To provide confidential communication from S to R BREAK Using Kt and KR: i. S computes KI(M) and sends it to R ii. R computes M as K (K+(M)) from above theorem iii. Only Sand R know and understand M

Secure Hash Functions **S.7** . H is function that takes as input any msg M and computes as output a msg H(M) of fixed length such that following condition holds: . It is computationally infeasible to find two distinct msgs M1 and M2 such that H(M1) = H(M2)

S.8	Examples	of Secure Hash
Msg Dig	est 4 (MD4)	
Msg len	gth = 128 bits	
. Secure Ha	sh Algorithm ((SHA1)
Msg len	gth = 160 bits	
. MD4 is	more efficie	nt
SHA-1	s mare Secure	

S.9 Msg Authentication
. Each authenticated msg from StoR is of form:
M is a msg C, called msg authentication code MAC of M
from StoR, is computed as follows: C = H(MIK)
I is concatenation H is a secure hash that S and R know K is a symmetric authentication key that
only S and R Know
o If R rous (M,C) and checks that C=H(MIK), then R concludes that M was not updated
after it is sent by 5 and before it is round by R

S.10 Digital Signatures
 Before S sends M to R, S can "sign" M and attach the signature to M: (M, signature of M by S)
• Signature of M by S is computed as follows: K (H(M)) H is a secure hash known to S and R
4

S.II Source Authentication

- R can use the signature of M by S to prove that S is the entity that signed and sent M as follows:
 - 1. R gets the signature $K_S^-(H(M))$ and the public key K_S^+ of S
 - 2. R shows that $K^{+}(K^{-}(H(M))) = M$

as required by the above theorem

3. This proves that S and only S could have signed and sent M

